Declaration

- Pharma
 - Research, education, advisory
 - Mundipharma
 - Pfizer
 - bioCSL

- Education
 - University of Melbourne
 - NPS

- Memberships
 - Australian Pain Society
 - EFC
“The pain of the mind is worse than the pain of the body”
Publilius Syrus (Roman author, 1st century B.C.)

Summary

• Pain assessments should consider person and pathology
 – recognise psycho-social factors (which may have a neurological basis)

• Pain is a multidimensional experience
 – more than just sensory, with multiple areas of the brain activated
 • sensation, mood, meaning

• Person with MS may have a normal or abnormal sensory system
 – may have prolonged pain experience, slower to recover from acute pain
 – may develop central neuropathic pain from MS
 – may develop secondary pains
 • musculoskeletal
 • internal organs
Pain pathways

- Nociception
 - respond to thermal, chemical and mechanical stimuli
 - somatic
 - deep, superficial
 - visceral
 - include vagal afferents

- Multiple brain centres activated
 - sensory-discriminative: SS1, SS2,
 - affective-motivational: ACC, Insular
 - cognitive-evaluative: PFC
 - prominent in chronic pain

- Pain is a multidimensional experience

Pain physiology: clinical

- Animal and human pain models demonstrate nervous system sensitisation
 - primary hyper-algesia
 - secondary hyper-algesia
 - ? “tertiary” hyper-algesia

- Response
 - recovery
 - 25-95%
 - neuro-plasticity
 - central sensitisation
 - immune activation
 - brain changes

- “Neuropathic”
 - Injury to nervous system
 - 3% acute pain
 - higher in chronic pain
Persistent trauma pain

- Epidemiology suggest influence of
 - psychological
 - social factors

- Persistent pain following trauma
 - acute pain severity OR 2.4
 - compensation OR 2.1
 - pre-injury disability OR 1.8
 - failure to finish high school OR 1.5

 » Williamson O J Orthop Trauma 2009; 23: 139

 - other studies discuss pain control attitudes, catastrophising

 » Holmes A Pain Medicine 2010; 11: 1599

Sensitisation in pain

- Peripheral
 - tissue inflammation leads to sensitised nerves
 - primary hyperalgesia

- Central
 - spinal cord up-regulation
 - secondary hyperalgesia
 - ? brain: “memory”

- Area of wound sensitivity predicts pain at 6 mths
 - can be reduced by NSAIDS, ketamine

 » Eisenach RAPM 2006; 31: 1

- Temporal summation
 - measures sensitisation potential
 - anxiety, catastrophising associated with ↑TS

Conditioned Pain Modulation

- Pain activates descending inhibitory control
 - opioid, nor-adrenergic systems
 - measurable
 • cold pressor test, heat pain test

- Implications
 - predictive of pain severity, persistence
 » Yarnitsky D. *Pain* 2008; 138: 22
 - reduced in catastrophising/anxiety
 » Goodin BR.
 » *J Pain* 2009; 10: 180
 - therapeutic target
 • SNRI in DPN
 » Yarnitsky D.
 » *Pain* 2012
 » 153: 1193

The Nociception Spectrum

Lower ← Supra-threshold → Higher
Lower ← Temporal Summation → Higher
More Efficient ← CPM → Less Efficient

Anti-nociceptive ← CPM → Pro-nociceptive

Figure 2. The Expression of Psychophysical Tests along the Pain Modulation Profile.

- Neurological basis for differences between individuals
 - pain experience
 - impact of pain on physical, psychological and social functioning
 - response to therapy/recovery
Catastrophizing: a predictive factor for postoperative pain

- High catastrophising levels associated with increased pain severity, increased risk of chronic pain and poorer QOL
 - unclear re analgesia consumption
 » Khan R. Am J Surgery 2011; 201: 122

Assessment of pain

- **Who is the person**: education, past pain experience, anxiety
 - yellow flags
 - *psycho-social factors associated with increased risk of disability, distress*
 - co-morbidities
 - nerve/brain changes, pre-existing chronic pain
 - 8+% aged hospital admissions on opioids

- **What are the potential mechanisms**: nociceptive, neuropathic
 - red flags
 - *clinical indicators of possible serious medical conditions*
 - superficial, deep somatic; visceral pain
 - *inflammatory component post-operatively*
 - assessment tools: 0-10, descriptors, Abbey pain scale

- **What is the impact**: physical, psychological, social
 - cardio-respiratory, bowels, metabolic, cognitive in acute
 - psycho-social more prominent over time
Classifying pain

- Duration, mechanism, etiology, site
- Nociceptive pain
 - somatic vs visceral; e.g. inflammatory, degenerative, ca
- Neuropathic pain
 - peripheral nerve and/or central nervous system lesion or dysfunction
- Mixed: neuropathic or neurogenic component in many chronic pain states

Management of persistent pain

- **Manage from a bio-psycho-social perspective**
 - Education, preparation, standardise treatment
 - Morrison S. *J Am Geriatrics Society* 2009; 57
 - CBT for catastrophisers pre ortho surgery of benefit in pilot study
 - Riddle D. *Arch Phys Med Rehab* 2011; 92: 859
 - Pharmacological
 - opioids: efficacy in acute/subacute, concerns in chronic use
 - nociceptive pain
 - adjuvant medications/techniques ➔ preventative analgesia
 - regionals, ketamine, TCAD/SNRI, GBP-inoids, clonidine
 - Non-pharmacological
 - relaxation response, cognitive training
 - exercise/physical strategies
 - PT, Tai Chi, weight loss
 - Social impact/interaction/engagement
 - discharge planning, communication
Effects of persistent pain

- Bio
 - Hyperalgesia (Increased sensitivity)
 - Concentration/cognitive
 - Sleep disturbance
 - Physical de-conditioning
- Psychological
 - Mood disturbance
 - Anxiety
 - Health worries
- Social
 - Decreased socialisation
 - Carer stress
 - Financial

![Diagram of pain formulation](image1)

Fig. 1. Formulation of a patient’s pain problems. Presenting problem: the patient is not performing his or her usual activities, and reports pain. Adapted from Looser (1982), with permission.

CBT model includes:

- Pain related fear leads to increasing disability (fear-avoidance model)
Non specific low back pain

- **Common**
 - natural history improve 3 mths
 - 20% some pain at 1 yr
- **Low % significant pathology**
 - Ca, fracture, infection
 - multiple nociceptive potential sources
- **Look for red, yellow flags on Hx**
 - little in examination
- **Poor correlation between imaging and pain**
 - “degenerative” changes common
 - Bone scan with SPECT views
 - Diagnostic/therapeutic blocks
 - Care with CT

Multiple Sclerosis

- **Inflammatory CNS disease with demyelination**
 - white matter plaques
 - periventricular, cervical cord, brain stem
 - grey matter gliosis
 - cortical (subpial, intra or leucocortical), cerebellum, thalamus
 » Zivadinov *BMC Neurol* 2012; 12: 9
 - ? cranial nerve inflammation
 - optic, trigeminal
- **Demographics**
 - women > men (2:1)
 - 2-150/100,000
 - genetic, geographics
Multiple Sclerosis

• Variable clinical course
 – relapsing remitting
 • 80%, may be benign, start with clinically isolated syndrome
 – secondary progressive
 • progressive decline between attacks (RR), yrs later
 – primary progressive
 • 10-15% initial cases
 – progressive relapsing
• ? variants
 – Devic’s disease, Maarburg MS, Schilder’s

Multiple Sclerosis

• Clinical
 – sensory
 • hypo-aesthesia, paraesthesia, pain
 – motor
 • weakness, spasms, clonus, co-ordination
 – autonomic
 • bladder, bowel
 – bulbar symptoms, visual
 – fatigue, emotional lability
 – cognitive impairment

• Secondary effects
 – falls/injury, treatment effects, energy
 – psycho-social implications
MS: Treatment

- iv steroids for acute attacks, +/- plasmapheresis
- disease modifying
 - Fingolimod
 - Interferon beta-1a, 1b
 - Mitoxantrone (monthly)
 - Natalizumab (monthly)
- symptom and disability management
 - Spasticity
 - continence
 - pain
 - multidisciplinary rehabilitation

Pain in MS

- Prevalence
 - 11-28% acute MS
 - 40-79% chronic
 - point prevalence 50%

- Continuous Central Neuropathic pain
 - subcortical plaques (sensory)
 - lower > upper limb "dysaesthetic" (unpleasant) pains
 - spinal cord lesions, ? Thalamus
 - chest wall

- Intermittent Central Neuropathic pain
 - trigeminal "neuropathy"
 - entry zone lesion
 - Lhemitte's phenomenon: shooting sensation with neck bend
Pain in MS

- Musculoskeletal
 - spasticity, spasms
 - joint fibrosis
- Visceral
 - bladder
 - bowel: constipation
- Mixed syndromes
 - headache in 11-23%

 » MS practice 2009, MSaustralia
 » Oconnor A. Pain 2008; 137: 96

MS and pain

- cross sectional study in 94 community MS pts
 - 64% chronic pain
 - 60% of these with dyseaesthetic pain, mean 5/10
 - higher pain grade ass with greater disability, HCU
 - worse AsQOL psych subscale

 » Khan F. J Pain 2007; 8: 614

- questionnaire survey of 4,600 veterans with MS
 - 62% response rate, >90% male
 - 92% some pain, 69% moderate or greater severity
 - associations between pain, physical interference, and mental health

 » Hirsh A. Arch Phsy Med Rehab 2009; 90: 646
MS and pain

- CBT cluster analysis (Turk and Rudy) in 62 MS pts
 - Pain Impact Rating Questionnaire
 - General Health Questionnaire - 28
 - MS Impact Scale – 29

- 3 clusters
 - “adaptive copers” 40%
 - low pain, high support, low distress
 - “dysfunctional” 36%
 - high pain, disability, distress, moderate support
 - “interpersonally distressed” 23%
 - lower pain, moderate disability, distress, low support

 » Khan F. Int J Rehab Res 2011; 34: 235

NSLBP and you

- 70% lifetime incidence, high recurrence rate
- Posture, work set up, duration, genetics, smoking, WCA factors
- Core stability poor in persistent pain
 - diaphragm, pelvic floor, multifidis
 - transversus abdominus
Clinical issues

- Care models
 - neurologist/care team
 - treatment trials/research
 - cognitive impairment

- central neuropathic pain
 - resistant to treatment
 - TCAD, GBP toxicity compounds MS effects

- difficult engagement into multidisciplinary care
 - transport, time, ?benefit

Allied Health

- Principles
 - assess and engage client in self-management approach
 - target unhelpful thinking and behaviours
 - optimise physical-psycho-social function

- Pain Management Programs
 - education on neurophysiology and impact of pain
 - individual sessions targeting specific issues
 - CBT: cognitive restructuring, ↑ self efficacy, relaxation, anxiety management
 - PT: posture, gait/movement, fitness
 - OT: domestic and social ADL, occupational

- Combination: yoga (mindfullness), Tai Chi, pilates
Rehab in MS

- RCT of rehab care in MS
 - wait list/usual care control
 - individual +/- 5 day inpatient rehab
 - neuro-psych
 - OT, PT, SP, medications
 - treatment and follow-up over 12 mths
 - improvements in FIM- motor and psych
 - but minimal or no improvement in MSIS and GHQ
 - deterioration in control group
 - improved: 71 vs 13%; deterioration 17 vs 59%
 » Khan F J Neurol Neurosurg Psychiatry 2008; 79: 1230

NSAIDS and Paracetamol

- Peripheral and central COX activation in inflammation
 - IL-1β activates peripheral and central COX 2
 - regional anaesthesia fails to prevent central effects
- Meta-analysis
 - opioid sparing 15-55%, reduced N/V, sedation 30%
 » Elia Anesthesiology 2005; 103; 1296
 » Marrett Anesthesiology 2005; 102: 1249
- Dosing important
 - need CNS concentration: not ketorolac, ibuprofen
 - appears 5-14 days recommended, pre-emptive best
- Pre-operative paracetamol > post incisional in meta-analysis
 - mild reduced pain score, opioid consumption, N/V
 - po loading preferred to iv post incision
Ketamine

• Pre-emptive NMDA antag prevents receptor up-regulation with nerve injury and hyperalgesia in animals
 » Wilson Pain 2005; 117: 421

• RCT ketamine intra-op spine surgery pts on opioids
 – 30% less opioid pca use
 – less pain at 6 weeks
 • mean VAS 3.1 vs 4.2
 • 70% less opioid use
 » Loftus Anesthesiology 2010; 113: 639

• Cochrane review
 – modest but statistically significant reduction in chronic pain after surgery
 – GBP, PreGabalin not significant
 » Chaparro L. Cochrane Database Syst Rev 2013; 7: CD008307

• Case series in chronic neuropathic pain, opioid tolerance

Anti-neuropathics

• Gabapentin/Pregabalin
 – evidence in neuropathic pain
 – anti-hyperalgesia
 – sedative, easy dose titration

• Valproate, Carbamazepine

• TCAD/SNRI
 – anticholinergic effects
 – effective in PHN, including preventative
 – NNT 2.2-2.6

• topical therapies
 – Lignocaine: 2-5%
 – amitriptyline/clonidine
Multimodal therapy

- Combining drugs of different classes to improve efficacy and reduce adverse effects
 - Opioids and paracetamol/NSAIDS
 - Local Anaesthetics and opioids

- Nortriptyline, Gabapentin, or combined in neuropathic pain
 - dosing 20-100, 1200-3600 mg
 - lower when combined
 - dry mouth, sedation issue

 Gilron I et al Lancet 2009; 374: 1252

Opioids

- Effective in acute (nociceptive) pain
 - up to 70% pain severity reduction
 - dose response relationship
 - potential toxicity

- Less effective in chronic pain
 - 30% pain reduction (nociceptive)
 - varied tolerance to side effects
 - *CMAJ 2006; 174: 1189*
 - ? role in neuropathic pain
 - ? mixed opioids

- Higher doses associated with
 - anxiety/psychological distress
 - substance use disorder
 - *Clinical J Pain 2010; 26: 1*
 - cancer/palliative treatment
Opioids

- Large range strong opioids, patient variability
 - Morphine
 - longer t1/2 in older, accumulation risk
 - more potent, equal efficacy via PCA in aged
 - Fentanyl
 - potent, no metabolites, patch
 - Oxycodone
 - abuse deterrent formulations
 - Hydromorphone
 - Methadone
 - long t1/2, potent, cardiac concerns

- Tapentadol
 - nor-adrenaline re-uptake inhibition, SR only
 - ? role in neuropathic pain, ? less constipation
 - 50 mg equivalent to 10 mg oxycodone
 » Vadivelu N. J Pain Research 2011; 4: 211

Buprenorphine

- Effective in cancer and neuropathic pain
 - broader pain phenotypes
- Less tolerance and dependence
 - can be combined other opioids; anti-hyperalgesic
- Less adverse effects
 - cognitive, constipation, respiratory depression
- Safe in aged, renal disease
 » Davis M. J Support Oncol 2012; 10: 209
 » Vadivelu N. Clin Interv Aging 2008; 3: 421

- Low intrinsic efficacy means higher receptor occupancy required
 - no apparent ceiling for analgesia, but limited respiratory depression
 - 0.3 mg comparable to 10 mg morphine in acute studies
 » Raffa RB. J Clin Pharm Therapeutics 2014; 39: 577
Other issues with opioids: persistent pain

- Improved understanding/experience of long term use
 - tolerance, pain sensitivity may increase
 - hormonal
 - immune dysfunction
 - ?? increased cancer recurrence
 » Lennon FE Anesthesiology 2012; 116: 940
 - sleep disordered breathing, dental, cardiovascular risks

- Addiction: low rates if risk stratified in chronic non malignant pain
 - no history of abuse: estimated 0.19% addiction, 0.59% aberrant use
 - increases to 3.3 and 11% if risk factors
 » Fishbain D. Pain Medicine 2008; 9: 444
 - Long term use oxycodone
 - majority dose stable after 3 months, side effects less
 - 2.6% misuse rate

Reviewing and maintaining opioid therapy

- Regular review initially
 - define nociception
 - reassess/reaffirm messages, education, permit
 - engage non-pharmacological management

- Adjuvant medications
 - regular paracetamol +/- NSAIDs
 - anti-hyperalgesic medication
 - Gabapentin/Pregabalin
 - 100-300 mg tds GBP
 - TCAD/SNRI
 - Nortiptylne 10-25 mg nocte
 - Duloxetine 30-60 mg daily
 » Myers J. BMC Musculoskeletal Disorders 2014; 15: 76
 - Clonidine (50-100 mcgm tds)

- ? Role for rotation or opioid withdrawal/reduction with ketamine
Bone Scan with SPECT

Figure 3 SPECT/CT images (axial, sagittal, coronal) localizing intense focal tracer uptake to the right L3/L4 facet joint (continuous arrow) consistent with facet joint arthritis.

Carstensen M. Chiro Man Therap 2011; 19: 2

Anti-oxidants

- Vitamin c
 - prevention of CRPS in limb injury
 » Zollinger J Bone Joint Surg Am 2007; 89: 1424

- Pollen extract + vitamins in bladder inflammation
 » Cai T. Urologia 2013; 16: epub

- Combination antioxidants in pancreatitis
 - Selenium, betacarotene, L-methionine, Vit C, E
 - less pain, improved function, QOL
 » Kirk J Gastroenterol Surg 2006; 10: 499

- “turmeric”
 - oral extract acts as anti-TNF
 - ? role in rheumatoid
Cannabinoids

- Animal studies suggest reduces adverse memories and pain conditioning in fear-conditioned rodents
 - ? role in reducing anxiety, distress in development of pain chronicity

- Multiple Sclerosis: mild benefit
 - Different pain types
 - Central neuropathic pain
 - Spasticity related pain
 - Moderate reduction in pain
 - Associated reduced spasticity, improved function
 » Wade D. Multiple Sclerosis 2010; 16: 707
 - Add-on therapy in resistant spasticity: 30-40% respond
 - Adverse effects common but mild, less with slow titration
 » Saste-Garriga J. Expert Rev Neurother 2011; 11: 627
 » Novotna A. Eur J Neurol 2011; 18: 1122

Cannabinoids

- Chronic non-cancer pain
 - Systematic review noted varied trial designs, short duration
 - 15/18 trials showed modest analgesic benefit cf placebo
 - secondary benefit for sleep
 - few adverse effects
 » Lynch M. Br J Pharmacology 2011; 72: 735
 - Neuropathic pain states
 - HIV neuropathy, nerve injury, brachial plexus
 - 30% average pain relief
 - Chronic nociceptive pain e.g. arthritis
 - equivalent to weak opioid, 30% pain reduction
 - improved mood, sleep, coping
 - ? less opioid tolerance
Medicinal cannabis and the older person

- USA/European experience
 - 50% for chronic pain
 - common in older persons
 - 1/3 >60yrs in dutch program
 - high CBD, low THC preferred: less anxiety
 » Brunt T. J Clin Psychopharmacol 2014; 34: 34
- P-kinetic, p-dynamic considerations
 - cognitive adverse effects
- 5 trials report older persons
 - no effects on dyskinesia, CINV, SOB
 - may reduce behavioural, anorexia with dementia
 - adverse effects >placebo
 - lack of data in older persons
 - pain in particular
 » Van der Elsen G. Ageing Research Reviews 2014; 14: 56

Basic Retraining – Posture
Posture correction

- Start from the pelvis and let it “flow” up your spine – correct pelvic tilt pre-activates multifidus throughout spine

- 3 components:
 - neutral pelvis
 - shoulders retracted
 - chin tucked

- Tr Abdominus exercises

Thank You

- A/Prof Fary Khan
- Dr Kevin Young

The Royal Melbourne Hospital